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By Charles E. Watkins
SUMMARY

This paper treats the effect of aspect ratio on the air forces and
moments of an oscillating flat rectangular wing in supersonic potential
flow. The linearized velocity potential for the wing undergoing
sinusoidal torsional oscillations simultaneously with sinusoidal
vertical translations is derived in the form of a power series in terms
of a frequency parameter. The series development is such that the
differential equation for the velocity potential is satisfied to the
required power of the frequency parameter considered and the linear
boundary conditions are satisfied exactly. The method of solution can
be utilized for other plan forms, that is plan forms for which certain
steady-state solutions are known.

Simple, closed expressions that include the reduced frequency to-
the third power, which is thought to be sufficient for most practical
applications, are given for the velocity potential, the components of
total force and moment coefficients, and the components of chordwise
section force and moment coefficients. The components of total force
and moment coefficients indicate the over-all effect of aspect ratio
on these quantities; however, the components of chordwise coefficients
yield more information because' they account for the spanwise distribu-
tion of aerodynamic loading of a rectangular wing and may therefore be
more useful for flutter calculations. It is found that the components
of force and moment coefficients for a small-aspect-ratio wing may
deviate considerably from those for an infinite-aspect-ratio wing.
Thickness effects which may alter some of the conclusions are not taken
into account in the analysis. Results of some selected calculations are
presented in several figures and discussed.
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INTRODUCTION

The. effect of aspect ratio on the single-degree torsional
instability of a finite rectangular wing oscillating in a supersonic
stream was treated in reference 1 by expanding, in powers of the fre-
quency of oscillation, the linearized velocity potential developed in
reference 2. Since only slow oscillations were considered pertinent to
single-degree torsionsl instability, terms in the expansion involving
the frequency of oscillation to powers higher than the first were not
considered.

In the present paper the expanded linearized velocity potential is
used to study the effect of aspect ratio on the air forces and moments
of an oscillating, thin, flat, finite, rectangular wing when higher
powers of the frequency of oscillation are taken into account. The
motions considered are sinusoidal torsional oscillations about a span-
wise axis taken simultaneously with sinusoidal vertical translations of
this axis. The velocity potential is developed by superpositions of
sources and doublets, so as to include all powers of the frequency of
oscillations up to any desired power. Simple, closed expressions are
given for the velocity potential, components of the total force and
moment coefficients, and components of the chordwise section force and
moment coefficients involving powers of the frequency up to and
including the third power. Extension of the results to include higher
powers of the frequency is straightforward.

A recent publication, reference 3, that became available after this
investigation was completed, is partly devoted to the treatment of a
rectangular wing undergoing the same types of harmonic motions as those
considered herein. The velocity potential is determined in the form of
a double integral, by application of the Fourier transform to the
boundary-value problem for this potential, and expressions for forces
and moments are given in terms of this double integral. The reduction
of the integral expressions of reference 3 to forms desirable for
flutter calculations, that is, chordwise section forces and moments,
is not given.

SYMBOLS
¢ disturbance-velocity~potential
X,¥,2 rectangular coordinates attached to wing moving in

negative x-direction
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€51
Zy
w(x,yq,%)

X0

ct

g‘b‘

B =M -1

T1,T2,5M,M0
w(E,n)

w(t)

rectangular coordinates used to represent space location
of sources or doublets in xy-plane

function defining mean ordinates of any chordwise section
of wing such as y = y, as shown in figure 1

vertical velocity at surface of wing along chordwise
section at y = ¥

abscissa of axis of rotation of wing (elastic axis) as
shown in figure 1 -

time
vertical displacement of axis of rotation

amplitude of vertical displacement of axis of rotationm,
‘positive downward

angle of attack

amplitude of angular displacement about axis of rotation,
positive leading edge up

time derivative of h and «, respectively
velocity of main stream
velocity of sound

free-stream Mach number (V/c)

functions defined with equation (7)

function used to represent space variation of source and
doublet strengths

function used to represent time variation of source and
doublet strengths

frequency of oscillation

reduced frequency (wb/V)
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R = BY(n - n)(ns - 1)

&nm

£1,f0,f3

B

Hl

T, 5,53,

represents functions of ®, x, and M, defined in
equation (15)

represent functions of x, Xg, and ®, defined in
equation (19)

function used to denote doublet distributions (see
equation (21))

function defined in equation (28)
function defined in equation (29)
density

local pressure difference measured positive downward,
defined in equation (31)

half-chord

half-span

aspect ratio (s/b)

total force acting on wing defined in equation (32)

components of total force coefficients, defined in
equation (35)

total moment acting on wing, defined in equation (36)

components of total moment coefficients, defined in
equation (38)

section force (total force at any spanwise station),
defined in equation (39)

components of section force coefficients, defined in
equations (41) and (42)

section moment (total moment at any spanwise station),
defined in equation (%0)

components of section moment coefficients, defined in
equations (43) and (U44)

functions related to F, and G,, defined in appendix
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ANALYSIS

Boundary~Value Problems for Velocity Potentials

Consider a thin flat rectangular ﬁiﬁg moving at a constant super-
sonic speed in a chordwise direction normal to its leading edge as
shown in figure 1. The boundary-value problems for the velocity
potential for such a wing may be conveniently classified into two types
associated with the nature of the flow over different portions of the
wing. On the portion of the wing between the Mach cones emanating from
the foremost point of each tip (region N in fig. 1(a)) there is no
interaction between the flow on the upper and lower surfaces of the
wing. The type of boundary-value problem for this portion of the wing-
is referred to herein as "purely supersonic" and the velocity potential
for region N is denoted by ¢N- On portions of the wing within the
Mach cones emanating from the foremost point of each tip (regions T,
Tp, and T3 in fig. 1(a)), there is interaction between the flow on
the upper and lower surfaces of the wing. The type of boundary-value
problem for these portiens of the wing is referred to as "mixed
supersonic” and the velocity potentials for these regions are designated
by ¢Tl’ ¢T2: and ¢T3: respectively. The complete velocity potential

at a point may then be expressed as ¢N1 ¢Tl, ¢T2, or ¢T3 according

to the region that contains the point.

As customary in linear theory, as applied to thin flat surfaces,
the boundary conditions are to be ultimately satisfied by the velocity
potentials at the projection of the wing onto a plane (the xy-plane)
with respect to which all deflections are considered small and which
lies parallel to the free-stream direction. Thickness effects are not
taken into account; hence, the velocity potentials are associated only
with'conditions that yield 1ift and are consequently antisymmetrical
with respect to the plane of the projected wing. It is therefore
necessary to consider the potentials at only one surface, upper or
lower, of the projected wing. The upper surface is chosen for this
analysis.

The differential equation for the propagation of small disturbances
that must be. satisfied by the velocity potentials is (when referred to
‘a rectangular coordinate system X,¥,2 with the xy-plane coincident
with the reference plane and moving uniformly in the negative
x-direction, fig. 1)

1 . .3\ Pg Pg F
Werdfo- B8 o
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The boundary conditions that must be satisfied by the velocity potential
are: (a) In regions Ty, To, T3, and N +the flow must be tangent to the

surface of the wing or

<%g>z-—»o = w(x,y,t) =V g;g + g%g (2)

where Zp is the vertical displacement of the ordinates of the surface
of any chordwise section of the wing (see fig. 1(b)). (b) In regions T3
and To the pressure must fall to zero along the wing tips and remain
zero in the portion of the Mach cones emanating from the foremost
points of the wing tips not occupied by the wing. (Another condition,
that the potential must be zero ahead of the wing and in the regions
off the wing adjacent to the Mach cones emanating from the foremost
points of the tips, is sutomatically satisfied by the type of source
and doublet synthesis employed in the solutions.)

For the particular case of a wing independently performing small
sinusoidal torsional oscillations of amplitude laol and frequency o

about some spanwise axis and small sinusoidal vertical translations
of amplitude |h0| and frequency , the equation of Zp is

Ty = b fag(x - xp) +hg) malx - x) +m (3)
Substituting this expression for Z; into equation (2) gives

w(x,yq,t) = Va + &(x - x0) + h (%)

The velocity potential may thus be expressed as the sum of separate
effects due to position and motion of the wing associated with the
individual terms in equation (k) as

g =0+ B+ P ' (5)

Derivation of ¢N

The boundary-value problem in the purely supersonic region (fig. 2(a))
is the same as that for the two-dimensional wing treated in reference L,
This problem is there shown to be satisfied by a distribution of sources
referred to, in this case, as moving sources because of the uniform
motion; that is,
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o . 1 \x-Bz N0
l,2,%) = - g5z | Lﬁ W(E,n)py an at (6)
1

In equation (6) W(£,n) represents the space variation of source
strength and must be evaluated in accordance with the individual terms
of equation (L) and @7 is the potential of a moving source situated
at the point (&,7,0) that may be expressed as

w(t - T1) + w(t - To)
Vi - np)(ng - n)

By =

(7)

where w(t) is the time variation of source strength and the symbols
with subscripts appearing in equation (7) are defined as

_M(x - &) Y -m)p - 1)

T CB2 | 5o

< Mx=g), N - m)g - 0 ‘
cB \

= '%\/(X- 6)® - o

%=y+%wx-92-§g

The time variation of source strength w(t) for harmonic oscillations
may be written as
w(t) = euﬂt

(8)
The numerator in equation (7) thus becomes

w(t - 11) + w(t - 1) = eim(t'Tl) + eiw(t'TQ)

Ta+T
it gt T - Ty
e e

2 cos W —g—§——— (9)

=2
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Substituting equations (7) and (9) into equation (6) yields

-1(x-£) cos( )d’q ag

it x-Bz pn, W(EM)e
NCRARS I sy R L g W )
0] 1 - -

where, for briefness,

oM Mew
cp® VB

O =

and

R=\(x - &2 - 82y - 1% - %8 = B\(n - ny)(ny - m)

The values of W(&,n) associated with the different terms of equa-
tion (4) are, in the order in which they are used:-

For h
W(Em) = 1732“ hy (11)
For Va
W(E,m) = Vag - (12)
For a(x - xq)
w@m)-wﬁwm&-xm (13)

If any of the values of W(§,1) given in equations:(11l), (12),sand (13)
is put into equation (10), the integration with respect to 1 can be
readily performed and the remaining integral evaluated as a series of
Bessel functions. (See, for example, reference 4.) However, in order
to be consistent with and to lead naturally to a succeeding part of the
analysis the integrand is expanded into a Maclaurln s series with
respect to @. The expansion yields
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it ~x-BZ T :
¢N(X)Y;z)t) = - eﬁ f f W(E)T]) <a011%+all§'+ e o F
gn
am |t - - .>+(a‘02R+a12§R+~ . .+an2§nR+. R R

(aOmRem"3 + alngEm-?) ...+ anmgnRzm‘3»+ .. ) + .. ]dn ag (1)

where the coefficients ap, are functions of ®, x, and M; those
coefficients involving @&, up to and including the third power, are:

N\
D1 im B o 1B 3
8.01— -1(1))(-—2—'}( +TX
.3
all=1a>+<732x %_2
_2 .3
w i
= - — 4 =
R N (15)
=3
il
EC
8, =—€0§“"+@X
02 2M2 2M2
a2 = - —5

o J
Observe the following identity that is valid regardless of the highest
powver of ® considered and that will be of subsequent use, namely

aOl + Xaqy + . . .+ xnanl =1 (16)
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It will be noted in equation (1k4) that the potential of a moving source
when expanded in terms of the frequency appears as a series of terms
similar to steady-state source potentials plus series of terms involving
various powers of R. By grouping the terms in equation (14) with
respect to powers of &, the following form of the source potential
convenient for later use is obtained:

14

it NX-BZ plp 1
¢N(x,y,z,t) = - J:) f wieE,n) (aOl = +agoR + . . .+
T

1 om-3 )
a.OmR +"’)+§(allf_{+a12R+"‘+almR U & S

+

En(anl%'{- apoR + . . .+ anmRem_3 + .. .)+ .. jdn ag a7

With the terms of the series grouped in this manner, in view of the
fact that the differential equation (1) is independent of &, it is
apparent that the coefficient of each power of € in equation (17)
is a solution to the differential equation.

If the values of W(&,q) in equations (11), (12), and (13) are
put into either equation (1) or equation (17), the integrations of each
term can be easily carried out in closed form. Moreover it can readily
be shown that, when all the terms involving ® up to a given power are
taken into account, the differential equation (1) is satisfied to the
highest power of @ considered. The boundary condition of tangential
flow as expressed in equation (4) is satisfied exactly and does not
depend on the order of @ considered.

Putting the values of W(E,n) in equatioms (11), (12), and (13)
successively into either equation (1%) or equation (17), carrying out
the indicated integration, and setting 2z = 0 yields for the wvelocity
potential, to the third power of ® at the upper surface of the wing,
in the purely supersonic region: ’

B = - 3(5ey + Vatp + ats) (18)

Y
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where
- 0 - A
£ = x - 22 -1‘:_1.%2_(2;32+3)x3
foo=x - B2 & (28 + 3)x3 ‘+ _i? (282 + 5)x* (19)
a7 "2 1oM° 182 (
x X2 &> 2 3 )y
f3 = 3 (x - 2Xo) -z (x - 3xp) - ZgﬁE (2B~ + 3)x7(x - XOZ

Derivation of ¢Tl’ ¢T2: and. ¢T3

For convenience in the derivation of the velocity potentials in
the regions of mixed supersonic flow the coordinate system is chosen
with the origin at one tip and the y-axis coincident with the wing
leading edge. (See fig. 2(b).) Region T3 (shown in fig. 1(a)) exists
vhenever the Mach lines from the tips intersect one another on the wing
(that is, when AB < 2). When the Mach lines from the tip intersect
one another on the wing and in addition intersect the tips ahead of the
trailing edge (when AB < 1), other regions, not considered herein, have
to be taken into account, and the determination of the velocity potential
becomes very cumbersome. This discussion is restricted to the condition
that the aspect ratio be greater than or equal to l/B, that is, A8 2 1.

Because of the similarity of conditions in regions Tp and To,
the potentials ¢Tl and ¢T2 will be of the same form. It is there-

fore only necessary to derive one of these, say ¢Tl. The other

potential can then be obtained by a simple translation of variables.
The potential ¢T3’ as given later, is a linear combination of ¢N: ¢Tl’

and ¢T2'

As pointed out in reference 1, moving doublets may be used to
satisfy the boundary-value problem in the regions of mixed supersonic
flow. The potential of the type of doublet required may be obtained by
partial differentiation of the potential of a moving source with respect
to the direction normal to the plane of the wing (in the present
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notation with respect to z). If the expanded form of the unit source
potential appearing in equation (17) is partially differentiated with
respect to 1z, the following expanded form of a unit doublet potential
is obtained:

elwt 3 1 om- 1
¢2= T oz (8.01:R+a02R+ « o . +8'OIIIR 3+ .« e .)+ §<all§+

ajoR + . . .+almR2m'3+. . .)+. . '+§n(anl%§+an23+- ..+

AR+ L )+ .Zld'q at (20)

Since the coefficient of each power of ‘€ in equation (20) satisfies
the differential equation and since the differential equation is linear,
it is permissible to weight these coefficients differently and therefore
write the velocity potential for region T; as

iwt .
¢Tl= £ affw(g,q)[a()l +a02R+...+aOmR2m_3+..'.>-i-x

Dl(ail%*’aleR*" . .+almR2m-3+. . .)§+; .

Dn(anl%+an23+ .. .+amR2m‘3+. . .)§n+ . .:ldn ag (21)

where D;(&,m) (i =0,1,2,...n) are the weight factors or distribution
functions and where the region of integration r is the portion of the
wing lying in the forecone emanating from the point (x,y,z). (See

fig. 2(b) for the case z = 0.)

The problem is now resolved to that of determining the distribu-
tion function for each series in equation (21) so as to make this
equation satisfy the boundary conditions. The determination of these
functions can be made with the aid of analogy with known steady-state
solutions. Examination of equation (21) shows that the first term of
each series has the form of a steady-state doublet potential and, as
discussed subsequently, is therefore a type of singularity that can be
superposed to satisfy certain conditions of tangential flow for the
antisymmetrical type of problem in regions of mixed supersonic flow.
The second term of each series, with the indicated differentigtion
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verformed, is a singular type of potential, (steady-state source type);.
however, it is multiplied by 2z and would therefore yield zero vertical
velocity at the xy-plane. All other terms appearing in each series in
equation (21) are similarly multiplied by 2z and are nonsingular;

they therefore yield zero vertical velocity &t the xy-plane. In order
to satisfy the condition of tangential flow it is therefore necessary
to consider only the first term in each series.

Retaining, as necessary, only the first term in each series in
equation (21) and imposing the condition of tangential flow as expressed
in equation (2) results in an integral equation for the distribution
functions D3 (i = 0,1,2,...n) as follows:

<a¢Tl
w(x,y,z,t) = 27 550
= lim & -—ffwg (D = +D =4+ .. .+
TR R (€;n) {Doaoy & + D12y 7
gn
Dpan H + . . .) dn dt . (22)

Consider the following integral which is of the type appearing in
& representative "first" term in equation (21) and which represents,
as previously mentioned, the potential of a doublet distribution for the
steady-flow problem:

K
;%ffl)x%dg dn (X 2 0) (23)

In steady flow a distribution of this type is convenient for treating
the problem of satisfying the condition of tangential flow for a dis-
tribution of normal velocity at the wing surface prescribed independent
of y Dbut proportional to K. The required integral equation for the”
distribution funcétion Dy in the steady case is

] 52 gK

lim NG Dg = a& dn = cxf (2k)
Z-300  OZ

where C is a known constant.

As noted in the following, the distribution function D may be
known provided Dy is known. The value of Dy in equation (24) is knowm
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for a variety of wing plan forms. In the case of rectangular wings the
expression for Dgp is derived in reference 1 and found to be

Dy = %L\/Bn(é = Bn) + & sin~l \/%]:] (25)

This expression may be considered as a’'key for finding any other dis-
tribution function Dg (K > 0) required to satisfy equation (24) for
the rectangular wing. It follows by direct substitution and reduction
that any Dy (K > 0) for this wing may be written in terms of Do,

equation (25), as
E P& £ K
= K! Do(ag (26
ARV S >

The boundary conditions (a) and (b) can be shown to be satisfied
by equation (22) after the values of Dg, given in equation (26), and
the values of W(&,7), defined by equations (11), (12), and (13), are
substituted into equation (21) for the velocity potential and the
identity in equation (16) is utilized. The velocity potential ¢Tl

is thus determined by equation (21) and these substitutions. At the
upper surface of the wing the velocity potential ¢Tl is given by the

expression
1 [; L Bex =
¢Tl=—B—jt-h|EFl-(2HD+E§—)F2-?F3 +
2 .53 20 53
v o L D _ 105) _ B® i® 2
a[%Fl (21& + ﬂé-x EEE-FQ —ﬁé— F3 + Eﬁ§ (28 1)F)y| +
. : - > .2 R
afe(x - xg)Fp - |2 + 2i0(x - xg) + ——T-(x - 2xx5) |Fo +
B @2
E“” e ﬂ ERPv- “}> (&0

where the terms are grouped conveniently by the definition of F in
the following integral: &

x
_ -1 i1
Fn —‘jg xB™ sin E? dx (n =1,2,3,4) (28)
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(The functions Fp, given in equation (28), and certain related func-
tions are of particular importance in the remainder of this development.
Integrated values of this function for the first few values of n and
expressions for related functions needed later in this.analysis are
given in the appendix.)

Examination of equation (27) shows that along the Mach line x = By,
separating region Ti; from region N, the expression ¢Tl reduces to

the expression for @y given in equation (18).

s

The corresponding potentials for regions To and T3 can now be
obtained. The potential ¢T2 is obtained from equation (27) by merely

substituting 2s -y for y in equation (28) so that

. .
Gn =A xo-1 sin'l\/———-ﬁ(esx— Y gy (n=1,2,3,4) (29)

The potential in region T3 (that is for 1 € AR < 2) is a simple
superposition of the potentials for regions N, T, and Tp, as in the -
steady case (see, for example, reference 5), and may be written as

¢T3 = ¢T1 + fp, - Py | (30}

FPorces and Moments

Two types of force and moment coefficients will be derived. First,
in order to gain some insight into the over-all effect of aspect ratio
on the forces and moments, expressions for total force and moment
coefficients are derived. Then, in order to present expressions that
are more suitable for use in flutter calculations, éxpressions for
section force and moment coefficients for any station along the span
will be derived.

Total forces and moments.- The local pressure difference between
the upper and lower surfaces on the wing may be written

Ap = - 2p(%% +V %g) (31)

In order to derive expressions for total forces and total moments it is
only necessary to consider the velocity potential in two regions; either
regions N and T) or regions N and To. Therefore the expression
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for the total force, positive downward, on the wing may be written as

P.= -ef prN‘dydx-zf prT dy dx (32)
N Ty 1

vwhere Apy is to be calculated from equation (18) and the integrations
in the first term are to be extended over the shaded portion of
region N shown in figure 2(a), and where App; is to be calculated

from equation (27) and the integrations in the second term are to.be
extended over region Tl. (The integrations in the first term are

s1mple and may be performed by inspection. Those in the second term
may be readily performed by making use of the relations given in the

appendix. )

After the indicated integrations have been perfonﬁed and all
position coordinates involved have been referred to the chord 2b (but
the original coordinate symbols maintained), the results can be written

as

- - BorRvRiRpe it Ehbg(fl + 1f'2) + aO(IT?) + iff[' (3;3)

where the reduced frequency k is related to o and & by the
relations

2
- b bBT —
k_V_ME ) (34)
and where
_ 2
7 2o - 15)
38
2 ‘ ' ' ‘
— 1 % 11 2
I, = =— - - - (k + p%) (35Db)
27 Bk " g5 gA[Ezk 366 ]
= 1 2 1] 1 1 2
Iz = —=— - —(3 + + 6 - = - [ + L) +
37 a2 355( o + o) 2822 " 380 (3 + )

1p%xg(2 + 525] : (35¢)
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R

o= Mk
657

L = 3k(52 - 1°- 28%%) +

(5 + 82 + 1262%,) + o |-=-(2 + 38%x,) -
B 38| gl 0

%(8 + 42 4 20p2xg + SBl‘xo] | " (35d)

The quenities Lji (i =1,2,3,4) are the in-phase and out-of-phase
components of the total force coefficients, Iy and L3 being the in-
phase and Ip and fﬂ, the out-of-phase components. It will be noted
that ii and L, are associated only with vertical translations of
the wing and are independent of axis-of-rotation location Xg. The
components L3 and LL are associated with angular position and

rotation of the wing about any axis x = Xo and depend partly on the
location of xg.

The total moment, positive clockwise, on the wing about the
arbitrary axis of rotation x = Xg 1is

ﬂ;=-2fo(x-xo)Adeydx-2j; f(x-'xo)ApTldydx (36)
1

If steps similar to those required to obtain equation (33) are performed
there is obtained

2

N - -spb3v2k2Aeff°’° I;—Q(le + i) + ag(l3 + m—@ (37)
where
_ 1 o 2
M = —(2 - 3xq) - 38 + 1 - kxp(2 + <) (38=2)
e it )]
= 1 Mk 11 .
My = = (1 - 2xg) - MK(3 - hxn) - L)1 (o _ -
o Bk( %0) 2[35(3 x0) i ng(_ 3x0)

'-5’12[3%[1;(52 + W) (k- 5xo)] ’ (38b)

o e e e e A e sy —————— e ey e e s . .- P, —ne
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% = 251 - 2x) - E%E* B% o dxp(B? - 1) - 852x°€' )

1)1 .. "1A 2 Yy _ 2
3% E§£§(2 - 3x0) - 553[5}4 + 38%) + 5x0(38 7 + 38° - 4) -

. 2082x,2(B° + 2]} - (38e)
My, = ;B%EE(Be - 3x5(28% - 1) + 6% ] (20 + 4p% - 25xy +
4opPxy - 60;32x02) + i E}EE + hxo(ﬁt2 -1) - 6;32;{02:[ -
%[0(2 + ) - 2lxg(2 - 3132 - 8% - 30822k + 82)|r (388)

The quantities M; and M, are, respectively, the in-phase and out-of-
phase components of total moment coefficients about the axis x = xg
assoclated with vertical translations of the wing; ﬁ§ and M), are the
corresponding components due to angular position and rotation of the
wing about x = xq.

It is of interest to note in equations (35) and (38) that the
components Ll and Mi do not involve the reduced frequency k. The

effect of frequency on these two components comes from terms involving
the frequency to the fourth and higher powers; but for values of -k
thought likely to be encountered in supersonic flutter (k < 0.1), the
contribution of these higher-powered terms to any of the components in
equations (35) and (38) is, for the most part, negligible.

Section forces and moments.- The section forces and moments at
any spanwise station are derived by integrating the pressure difference
along the chord for the forces, and the pressure difference multiplied
by a moment arm for the moments. Since the distribution over the entire
wing is symmetrical with regard to the midspan section, it is only
necessary to derive expressions for the forces and moments at any
statio? of the half-span adjacent to the origin. (See figs. 1, 2,
and 3.
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Under the restrictions previously stipulated, two cases that can
arise are considered (see fig. 3): (1) the Mach lines from the tips
do not intersect on the wing (or AR > 2) and (2) the Mach lines
intersect on the wing but the Mach line from one tip does not intersect
the opposite tip ahead of the trailing edge (or 1 = AB < 2). Only the
final forms of the section force and moment equations are given. These
forms are easily calculated by deriving the pressure difference for the
different regions from the appropriate velocity potential, making use
of figure 3 to determine the limits of integration for the regions
involved, and using the relations given in the appendix to carry out
the more troublesome integrations. The integrated expression for any
region can then be reduced to the forms

P = -upbvekzeimt[g?(Ll + ilp) + ag(L3 + iLui} (39)

and

M, = -hprVQerMt[_T%O(Ml +iMy) + ag(My + mh] (40)

where the position coordinates are referred to the chord length 2b.

The components of force and moment coefficients for the half-span
adjacent to the origin are as follows: -

Case 1 (see fig. 3(a)): For any section between the tip and the
point where the Mach line intersects the trailing edge, or

where 0 <y <1%', the components of section force coefficients are

_ 2 _
Ly = - %(Fl - 1_+B§_B 2) (k1a)
b1 s Mm% = =
Iz = prlpk F1 * BTL—E%Q " Y - 3 Fﬂ )
L 1 = 6Bf*+382-l=

2(2p2 + 1)xg = 2 _
2(267 + 1)xg = 6_3_1_51?;! (¥1c)

32 2" BQ
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b1 = 2.1 = | Mk
LL,.=‘—3;-E|—(:2-XO)F1- Q—B—;— F;l+§gl—3i(1-32+231‘+

262xo - 4plxg) Fp - 6% (4 - 3%) F3 - (1 - 782 - eoxal*)f‘g (h1a)

where F, (n=1, 2, 3, 4), given in the appendix, is obtained from Fp,
equation (28), when x = 2b. For any section between the point where
the Mach line intersects the trailing edge and the midspan, or

where ]B—'§ y§ -g , the components of section forces are:
1 . A
Ll = B3 °
_ L1 M
To =gk = g5
1 ; - (42)
L———-—(3+52)+6B2:l (
37 m2 30 "0
L)_l_——[B -1)-25%4:[ (5+B +12[3x)

/

As a check on the results in equations (41) and (42) the expressions

in equations (41) reduce to those in equations (42) when y = L

B
The components of section moment coefficients for case 1l are as

follows: For 0 <y < ‘1;:

L

Ml=-B—Tf(

— ‘ 2 — 2 —
= 252 + 13 1=
- oxp) Ty +oxg A2 B; ¥, - 22L& BZ F;I (432)

— 2p2 - 1)(1 - 2x
M2=;—,t{il—;(F2 XoFl) EB gé o) 5 Fp + GxgF3 -

42 +1 3
ol F—;J} (43b)
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4(1 - 3x9 + 3%92) =
3 F]_ +

I = =
M3 = B—T[ k—e(FQ - XOFl) -.

(68" + 382 - 1)(1 - 2x5) + 4p2x02(1 + 2p2) =
B)'l' , Fo +

6(1 + g2) xoF - 20" + 2182 + 3 §§]

B2 3 3Bh

42 2= 28°+1_.= 28241z

1 Mok
Mp = =(1 - - -k
D Bk( 2x0) 2B5(3 x0)

N .
M3 = 22t - 2xo).- ;§5(3 + 8% - hxg + 4p2xy - 8pxy?)

| __2 2 2 o, 2
My = —=—|[2(p= - 1) - 3xp(2B - 1) + 6p%xp= | +
3B3kE ]

MK [j 2 2 2,2
o7 M5+ B) - 5n(86 - 5) - Gop? ]

2l

(43¢)

(k3d)

(L)
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The expressions in equations (43) reduce to those in equations (4h)

when y = % The expressions in equations (42) and (44) correspond to

the more exact two-dimensional components of force and moment coeffi-
cients derived in reference L.  For values of k< 0.1 +these expres-
sions yield, for the most part, values that are in good agreement with
those that may be calculated from the tables in reference .

Case 2 (see fig. 3(b)): For any section between the tip at y =0
and the point where the Mach liné from the tip at y = 2s intersects

the trailing edge (or where 0< y§_ A - %) , the components of section

force coefficients are given by equations (U41) and the components of
section moment coefficients, by equations (43). For any section between

the point where the Mach line from the tip at y = 2s intersects the

trailing edge and the midspan (or where A - %< y< %) , the components

of section force coefficients are

Y= = 1+282= | = 1 -
Lg = -« —|(FL + G) - —=—(Fo + Gng + = (454)
B"[‘ B2 83

- = 2 = = = =
Lp = EhE =(F o+ §) + %’% (282 - 1)(Fp + Gp) - 38°(F3 + G3)__J i

L_L_E]E ‘ I5h
(Bk 55) ‘ , (45p)
L3=§;$(§1+§1)-2(1-2xo)(§1 +G) +

b 2 _ - = 2(282 + 1 _ -

B ol G5  BE G, LG,

Bt - g2

B2 Gy 5 |- L+ [ + 52 + 6o (15c)
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— — 2 —_ =
L“%{% (2 - %0)(F, + &) - 32 B;l (Fo +Geﬂ +

?% 3(1 - 82 + 2" + 2pPx, - 4peo) (Fp + Gp) -

Q

68 (4 - 3x0) (F3 + 83) - (1 - 782 - 208%) (F, + aﬂ} -

{B%k [(82 - 1) - 2p2] B%(5 +p2 4 126%)} (¥5a)

vhere G, (n = 1, 2, 3, 4), given in the appendix, is obtained from Gp,
equation (29), when x = 2b. The corresponding components of section
moment coefficients are '

- — 2 L
M = - {%El - 2x0) (Fy, + &) + 2"0(2‘;’2 *D 7, . 62] )

382 + 1
B2

(Fy + 85 + 5.%(2 - 3x0)} (46a)

Mo =Bi,({%|§="'e + Gp) -Xo(fl"“ﬁl)j+

2 _ - — — = =
I;ik Eéﬁ ;;(l EXO) (fe + G2) + 6XO(F3 + G3) -

2 —_ — . I 2
f‘ﬁﬁ%l (Fy + G”E[} - Bl—k (1 - 2x0) - ;H (3 - kxo) (46b)
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— — - 2 = =
M3=Bin{k%[f=’2+_ée)-xo(§1+alil S 3Xg+3X0 (FL+ &)+

(68% + 382 - 1)(1 - 2xy) + 4B2xo2(1 + 2p2)

: 7 (Fo + Gp) +

2 _ k. pye2 0
6xo(l2+ B8<) (-F_-3 ) - 2087 + 211:3 + 3 (Fu + G -
B 3B

1 . 1 2y - 2.2
{Ek_é(l - 2%g) - 555[3 + B?) - bxo(1 - %) - 8 xo:& (46c)
"2

L [2 _ - 2%+l = =, 2 1= =

M), = H(E (L - x0)2(F1 +Gy) + —P——B—Z—— xo(Fo + Gp) - B BZ (F3 + G3ﬂ+
WPk 1 L 2 2 e 2lE L FE
—Eé— EEHEAB - 2B + 1);1 - 3%y +3%5°) + 1 3xo:l(F2 + Gp)
(2 - kxo + 3x02)(F3 + 3) - :—‘;E(sal* £ 12 ) (Fh + W) +

?632 * 3)(?5 + E5)}> ‘{%%;E(Bg - 1) - 3xp(28% - 1) + 6Bexo€| +

. ,
M‘—E@ + B%) + 5x0(88° - 5) - 60B°xy” (464)
1567 ,

For the limiting condition of case 2, that is, when the Mach line
1

from one tip intersects the opposite tip at the trailing edge, or = E
(see fig. 3(c)), the components of section force coefficients are given
by equations (45) and the corresponding components of moment coeffi-
cients by equations (L46).

SOME PARTICULAR CALCULATIONS AND DISCUSSIONS

From the expressions for total force and moment coefficients,
equations (35) and (38), respectively, the over-all effect of aspect
ratio on the magnitude of the forces and moments can be calculated
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for particular values of the parameters M, k, xp,.and A. Examination
of these equations shows that varying some of the parameters might

cause some terms in the equations to vanish and change sign. For
example, if x3 is continuously increased from some value less than 1/2
to some value greater than 1/2, the first terms in the expressions

for Mp and M3 vanish at xg = % and change sign when xg becomes

greater than 1/2. In particular, decreasing the aspect ratio decreases

— e m—— —

and M3 but increases the two important components L) and M.

Although the effect of aspect ratio may change considerably with
only a small change in any one (or more) of the parameters M, Xk,
and Xg, some insight into what the over-all effect might be can be
gained from calculations of all the components of total force and
moment coefficients for various values of M and A and fixed values
of the parsmeters k and Xp. Results of such a set of calculations
are presented in Figures 4 to 7.

In figures 4 and 5 the components of total force and moment
coefficients for various values of A and for %o = 0.4 and k = 0.02
are plotted as functions of MZ. The curves in these figures calculated
Tor infinite aspect ratio correspond to the two-dimensional results of
referénce 4. The dashed curves represent calculations for aspect ratio
and Mach number combinations that cause the Mach lines from one tip to
intersect the opposite tip at the trailing edge so that along the
dashed curves the aspect ratio is not constant but varies with M
according to the previously given expression

1
A== ——
Y Y

The difference, at any value of M?, between the dashed curves and the
curves corresponding to infinite aspect ratio in figures U and 5 is,
therefore, for the chosen values of k and X, the maximum effect of
aspect ratio on the components of total force and moment coefficients
for a rectangular wing under the restrictions of the foregoing analysis.
It will be noted in figures 4 and 5 that, when the aspect ratio is
small, the deviation of the three-dimensional results from two-
dimensional results may be gquite large.

In figures 6 and 7 the components of the total force and moment
coefficients are plotted as functions of aspect ratio for =xg = 0.h,
k = 0.02, and some particular values of M. It will be noted in these
Tigures that all the components of force and moment coefficients undergo
rapid changes with respect to varying aspect ratio when A becomes less

o e o e e [P,
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than 4 or 5. It may be remarked that the directions of the changes
" with respect to aspect ratio appear to be such that they would have
favorable effects on the flutter characteristics of a wing.

The spanwise distribution of the components of section force and
moment coefficients computed from equations (41) to (4k4) for A = 4,
x0 = 0.4, k = 0.02, and M =2 are plotted in figures 8 and 9. The
portions of the curves in these, figures corresponding to values of ¥y

in the range %'g y<A - % are the two-dimensional values and the

effect of aspect ratio may be noted in the tip regions, o< v < l

and A - S y'§.A, as deviations from these two-dimensional values.

B

In conclusion, it may be stated that, in regard to the effect of
aspect ratio on supersonic flutter, an important item that has not been
discussed herein but can be studied for any particular case with the
aid of equations (33) and (36) is the change in center of pressure,
associated with prescribed motions of the wing, with change in aspect
ratio. An investigation to find the effect that thickness might have
on the center-of-pressure location is also needed. An extension of the
foregoing analysis to include the effect of an aileron as an additional
degree of freedom would follow in a straightforward manner. '

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va.; January 6, 1950
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APPENDIX

SOME INTEGRATED VALUES OF Fp, Gp, Fpn, Gp, AND

OTHER RELATED FUNCTIONS

Values of Fp and Gp.- The values of the functions Fn, equa-

tion (28), and Gy, equation (29), for the first few values of n are
as follows: '

' b4
Fn =f x2-L sin-1 |\ foy/x ax (n=1,2,3,...)
0
F, = \/By(x - By) + x sin™t By/x ‘ .
2
Fp = }252& \By(x - By) + % sin~l\[ay/x

2 " " 3
Fy = 3 +hﬁgx+8‘3y2 By(x - By) +’i_,)-~'~vin'l By/x

3. 2 2 3y3 b
Py = 2= OBy Ihgﬁ rx + 160% By(x - By) + J- sin™L \[py/x

.

4 3 2 3 L)
_ 35" + hopyx> + 48p y2x2 + 6hB3y x + 128p7y
Fg = 575 VBy(x - By) +‘

5
x .
5 sin=t BY/X

n_—/;xxn’lsin'l@dx ~(n_—_l,2, 3{"')
Gy =\/B(23 - y)Ec - B(2s - yz] + x sin-l L@ .

G2
|

P, — e - e —— T S B e e it e i o — e e
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* 1.2
]; xFp ax = é‘(x Fpe- Fpio) ‘ ‘

X 5 1
f x°F, ax = §(;;3Fn + Fpp3)

0
2
X X - QXXO . 1
/‘O (x - x9)Fy dx = ——5—— Fp + XoFn4y1 - 35 Fni2
b'd 5 x3 - 3xox2 + 3x02x 5 "1
/; (X - XO) Fn ax = 3 Fn - Xp Fn+l + XOFn+2 - '?—) Fn+3

Corresponding integral relations for G, may be obtained from these
relations by simply replacing F by G.

Integral relations for '_F:n.- Integral relations for .fn that may
be used in calculating total forces and moments from sectional forces
and moments are as follows:

1/ _ .
- 2bf F dy = g~
0 s

1/8 - b
2b f fe dy —I—t'
, O 3B

1

I

1/8 _ .
= _ 5Sbx
2bfo F, ay = 375

1/8 _
2bf F), dy = 2%
0 L 208
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NACA TN 206k 33
A
'
0 N\ _ |_ Ny Y
v /
\\\ ? : AI i / '
N e |o I8
\ ,5) L / |"
S |> >
) W —
X=2b ————
\Y
Vs’ X {,‘%'& / |
(2) Purely supersonic region.
0 -
/ =4
o/ =, N,
N7 ] é 0
&\/ /,'(\’&’T ";\( >
/ 72’-'71,—.;‘@ N |
/ ST;’IYI)I m mT\ x-ab
/
4 xXv Q

(b) Mixed supersonic region.

Figure 2.- Sketch 1llustrat1ng areas of integration for "purely supersonlc'
and ' mlxed supersonic" regions of flow.




34 L NACA TN 206k

- T .
2 .

(Fb\ | /F”)

() Mach lines from tips do not intersect on wing.

2b

o<

o 5/ 2S

N

o Tz

v

2b

_Aes-2k) (22)

(b) Mach lines from tips intersect on wing but Mach line from oné tip
does not intersect opposite tip.
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(c) Mach lines from tips intersect on wing and Mach line from one tip
intersects opposite tip at trailing edge.

Figure 3.- Sketch illustrating different Mach line locations accounted
for in analysis.
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for x9 =0.4, kK =0.02, M =2, and A = L.

Figure 8.- Spanwise distribution of component of section force coefficients
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Figure 9.- Spanwise distribution of component of section moment coefficients
for xp = 0.4, Xk = 0.02, M =2, and A = L.
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